Supplementary: An Integrative Approach to Predicting the Functional Effects of Non-Coding and Coding Sequence Variation

1 THE FEATURE GROUPS

We used the following feature groups to annotate each SNV in our pathogenic and control datasets:

A. 46-Way Sequence Conservation: variants within highly conserved regions are likely to have more impact than those within high variability regions; therefore we used two measures of evolutionary conservation, namely PhastCons (Siepel et al., 2005) and PhyloP (Pollard et al., 2010) scores, obtained from the multiple sequence alignment (at the nucleotide level) of 46 vertebrate genomes to the human genome (Blanchette et al., 2004). In addition to these scores, we constructed ab initio hidden Markov models (HMMs) representing these alignments using the HMMPR software package (version 3.1b1) and extracted the relative probabilities of each nucleotide at the corresponding position within the alignment. Following our previous work (Shihab et al., 2013b,a, 2014), we also included a measure of the magnitude of effect given the SNV (i.e. the log-odds ratio of observing both nucleotides).

B. Histone Modifications (ChIP-Seq): we used ChIP-Seq peak calls for 14 histone modifications across 45 cell lines from ENCODE (The ENCODE Project Consortium, 2012).

C. Transcription Factor Binding Sites (TFBS PeakSeq): we used PeakSeq (Rozowsky et al., 2009) peak calls for 119 transcription factors across 77 cell lines from ENCODE.

D. Open Chromatin (DNase-Seq): we used DNase-Seq peak calls across 119 cell lines from ENCODE.

E. 100-Way Sequence Conservation: we used similar features to those described in A, but now obtained from the multiple sequence alignment of 100 vertebrate genomes to the human genome. We considered both 100-way (E) and 46-way sequence conservation (A) to highlight any gain which could be made by including more species in the comparison.

F. GC Content: we used a single measure for GC content calculated using a span of 5 nucleotide bases from the UCSC Genome Browser (Kent et al., 2002).

G. Open Chromatin (FAIRE): we used Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) peak calls across 119 cell lines from ENCODE.

H. Transcription Factor Binding Sites (TFBS SPP): we used SPP peak calls Kharchenko et al. (2008) for 119 transcription factors across 77 cell lines from ENCODE.

I. Genome Segmentation: we used 7 genome-segmentation states in 6 cell lines using a consensus merge of segmentations produced by the ChromHMM (Ernst and Kellis, 2010) and Segway software (Hoffman et al., 2012).

J. Footprints: we used annotations describing DNA footprints across 41 cell types from ENCODE.

The number of features within each of these feature groups, and the type of feature used, is presented in Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th># Features</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>46-way conservation</td>
<td>8</td>
<td>continuous</td>
</tr>
<tr>
<td>B</td>
<td>Histone ChIP-Seq</td>
<td>190</td>
<td>continuous</td>
</tr>
<tr>
<td>C</td>
<td>TFBS PeakSeq</td>
<td>443</td>
<td>continuous</td>
</tr>
<tr>
<td>D</td>
<td>Open chromatin DNase-Seq</td>
<td>122</td>
<td>discrete</td>
</tr>
<tr>
<td>E</td>
<td>100-way conservation</td>
<td>8</td>
<td>continuous</td>
</tr>
<tr>
<td>F</td>
<td>GC content</td>
<td>1</td>
<td>discrete</td>
</tr>
<tr>
<td>G</td>
<td>Open chromatin FAIRE</td>
<td>19</td>
<td>continuous</td>
</tr>
<tr>
<td>H</td>
<td>TFBS SPP</td>
<td>443</td>
<td>continuous</td>
</tr>
<tr>
<td>I</td>
<td>Genome segmentation</td>
<td>6</td>
<td>categorical</td>
</tr>
<tr>
<td>J</td>
<td>Footprints</td>
<td>41</td>
<td>continuous</td>
</tr>
</tbody>
</table>

Table 1. The features represented by each feature group, in terms of number of features and data type. Our ten feature groups have up to 443 features that may be continuous, discrete or categorical. Continuous and discrete features were encoded directly into linear kernels. Group I (Genome segmentation) has only categorical features, with 7 categories that we convert to 7-bit binary representations (42 features in total) for our kernel matrix representation of the data.

2 THE METHOD

We used a kernel-based classifier (Shawe-Taylor and Cristianini, 2004; Schölkopf and Smola, 2002), encoding each feature group into an appropriate base kernel. To avoid estimation of a kernel parameter we used linear kernels (Shawe-Taylor and Cristianini, 2004; Schölkopf and Smola, 2002), with use of a soft margin (see below) to cover the possibility of non-separable data. Continuous and integer-valued features were encoded directly into these linear kernels. Group I (Genome segmentation) had only categorical features, with 7 different categories in all. These 7 categories were converted to 7-bit binary representation (hence 6 × 7 = 42 features in all) which was encoded via a linear kernel. Kernel matrices can be constructed for a very wide class of data objects, beyond the types of data described here. This includes sequence, tree-structured data and graph data (Shawe-Taylor and Cristianini, 2004).

Thus each constituent type of data was encoded into a corresponding base kernel K_i, from which we derived the composite kernel matrix $K_e = \sum_{\ell=1}^{r} \lambda_{\ell} K_\ell$, where $\sum_{\ell=1}^{r} \lambda_{\ell} = 1$.

© Oxford University Press 2014.
and $\lambda \geq 0$ (where $\ell = 1, \ldots, p$ ranges over the p types of data). For example, for the non-coding dataset with four feature groups (groups [A–D]), given in the paper, the spectrum of kernel weights, λ_1 is depicted in Supporting Fig. 3.

The learning parameters in the classifier, α_i (where $i = 1, \ldots, m$ ranges over the m training examples in the data) and the kernel weights, λ_i were found using SimpleMKL (Rakotomamonjy et al., 2008). Having found the parameters and the composite kernel via the kernel weights, the predicted label of a new input z is given by the sign of $\phi(z) = \sum_{i=1}^{m} \alpha_i y_i K_c(x_i, z) + b$ where the offset b is found from:

$$b = -\frac{1}{2} \left[\max_{\{i | y_i = -1\}} \left(\sum_{j=1}^{m} \alpha_j y_j K_c(x_j, x_i) \right) \right]$$

$$+ \min_{\{i | y_i = +1\}} \left(\sum_{j=1}^{m} \alpha_j y_j K_c(x_j, x_i) \right)$$

During the training process, to determine the results presented in Fig. 1 and Fig. 2, we split the training data into 5 folds to identify an optimal C-value (a L1-soft margin parameter, see Campbell and Ying (2011) for details) and the kernel weights for the composite kernel. In each fold, we used SimpleMKL (Rakotomamonjy et al., 2008) to find the optimal kernel weights, using C-values in the range $[10^{-4}, 10^4]$ as well as using a hard-margin (Campbell and Ying, 2011). In some cases, we also added a small ridge constant (10^{-8}) along a kernel matrix diagonal to ensure convergence during training. For testing, we then used the C-value and weights that yielded the highest accuracy on the held-out component of the training data. From this process, we selected $C = 0.01$ and the kernel weights by averaging across the folds in the training data, and used these results for evaluation of performance on the held-out test data.

With Fig. 3 and Fig. 4, we further used a confidence measure, associated with the class assignment. The above described MKL method has an intrinsic confidence measure, namely, $\phi(z)$. The larger the absolute value of $\phi(z)$ the greater the degree of confidence in the predicted label. We could relate $\phi(z)$ to a probability measure by fitting a sigmoidal probability function (Platt, 1999). Thus, for binary classification, we fit the sigmoid $p(y) = \frac{1}{1 + \exp(\lambda_0 + \beta)}$. With class labels $y_i \in \{+1, -1\}$ and letting $t_i = 0.5(y_i + 1)$ the parameters A and B could be found by minimizing the negative log likelihood of the training data via the cross entropy error function (Platt, 1999):

$$\min_{A,B} \left[-\sum_i t_i \log(p_i) + (1 - t_i) \log(1 - p_i) \right]$$

where p_i is the sigmoid probability function evaluated from $\phi(x_i)$. We used the Levenberg-Marquardt algorithm (Noceval and Wright, 2000) to perform this minimization.

3 MODEL INTERPRETATION

3.1 Non-Coding Variants

In Supporting Fig. 1, we present the ROC curves and AUC scores for classifiers based on each component feature group and FATHMM-MKL (using all 10 feature groups [A – J]). As seen in Supporting

For the non-coding dataset with 4 feature groups, the spectrum of kernel weights is depicted in Supporting Fig. 3.

Fig. 2. FATHMM-MKL outperforms GWAVA (Richie et al., 2014) and CADD (Kircher et al., 2014). However, performance is poorer than results for the four-feature-group model (Fig. 1). Note that the cross-validation data for the ten-group classifier is a subset of the data for the four-group classifier, so results are slightly different. To choose the 4 feature groups for the latter model, we used the AUC scores for the single feature group classifiers in Supporting Fig. 1.
Supporting Fig. 3. The spectrum of kernel weights, λ_ℓ, using a 4 feature group model on our non-coding dataset. Here, the height of each bar indicates the relative weighting given to that source of data by the MKL method.

3.2 The coding dataset

For the coding dataset, and using 4 feature groups [$A - D$], we get an AUC score of 0.91, whereas with [$A - H$] we get an AUC score of 0.93, despite using 2,146 training examples as against 6,000 training examples when using only [$A - D$] as the feature groups. In Supporting Fig. 4, we give the ROC curves and AUC scores for the 4 feature group dataset. Performance with this model is similar to that for CADD (Supporting Fig. 5) when evaluated on the same training and test sets.

Supporting Fig. 4. Five-fold cross-validation performance for FATHMM-MKL and other classifiers, using the coding dataset, with the 4 feature groups [A-D]. ROC curves for FATHMM-MKL and for classifiers using only one type of data.

3.3 Conservation features

The feature groups based on 100-way and 46-way multiple sequence alignments (MSAs) provided by far the best performance for both noncoding and coding predictions (Figures 1 and 5, Supporting Figures 1, 3 and 4). To assess the features in these groups, we looked at the individual feature weights for SVMs trained on these groups. Each of these groups uses the same set of features:

- **PhastCons score**: a score based on multiple sequence alignments (MSAs) and a phylogenetic tree. It is similar to FATHMM but uses a phylogenetic HMM to account for distances between species and it accounts for conservation in the region surrounding each position.
- **PhyloP score**: as with PhastCons this score uses a phylogenetic HMM to assess evolutionary distances, but does not account for regional conservation.
- **MSA depth**: number of species used in the FATHMM MSA. The more species included in an alignment, the greater our confidence in the resulting conservation score.
- **P_w**: FATHMM emission probability for the wild-type nucleotide
- **P_m**: FATHMM emission probability for the mutant nucleotide
- **Difference, Absolute diff.**: the difference (absolute difference) between P_w and P_m. The greater the difference, the greater a mutation’s potential impact.
- **Ratio**: the unweighted FATHMM score, which is the logs-odds ratio of P_w and P_m.

For noncoding predictions we find that the PhastCons score based on phylogenetic HMMs yields the highest single weight (1.17), while three of the FATHMM components (MSA depth, P_w, Absolute diff.) and the PhyloP score also contribute substantially
Table 2. Feature weights for 100-way and 46-way conservation feature groups that provide the best discrimination in noncoding and coding predictions. SVM models trained on the same data used for the full MKL kernels yield the feature weights shown above. In sum the FATHMM components contribute substantially to noncoding predictions, but the PhastCons scores were the single most informative feature. In coding regions the weights are more evenly distributed between the three main methods.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Noncoding</th>
<th>Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100-way</td>
<td>46-way</td>
</tr>
<tr>
<td>PhastCons</td>
<td>1.1671</td>
<td>0.5384</td>
</tr>
<tr>
<td>PhyloP</td>
<td>0.2750</td>
<td>0.3471</td>
</tr>
<tr>
<td>MSA depth</td>
<td>0.1958</td>
<td>0.2641</td>
</tr>
<tr>
<td>P_w</td>
<td>-0.1114</td>
<td>-0.0566</td>
</tr>
<tr>
<td>P_m</td>
<td>-0.0494</td>
<td>-0.3254</td>
</tr>
<tr>
<td>Difference</td>
<td>0.0220</td>
<td>-0.0498</td>
</tr>
<tr>
<td>Absolute diff.</td>
<td>-0.1287</td>
<td>-0.0778</td>
</tr>
<tr>
<td>Ratio</td>
<td>-0.0456</td>
<td>-0.0303</td>
</tr>
</tbody>
</table>

In coding predictions the weights are distributed more evenly across the three methods.

4 CAUTIOUS CLASSIFICATION WITH THE CODING DATA SET

For the non-coding dataset, we present results for the test accuracy versus a cutoff p-value for the confidence measure (see above), in Fig. 3 and Fig. 4. We pursued a similar study for the coding dataset and using the [A-D] datasets. The result is given in Supporting Fig. 6 and Supporting Fig. 7.

5 FALSE-POSITIVE ANALYSIS ON GWAVA

Supporting Fig. 8. Evaluation of accuracy and false-positive counts for GWAVA, for comparison with CADD and FATHMM-MKL, depicted in Figure 7. In this experiment, GWAVA's accuracy and false-positive rate are not competitive with the other two methods: its accuracy peaks at a threshold of 0.38, with balanced accuracy of 67.7% and a false-positive rate of 16.7%.

REFERENCES

